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Abstract

In this paper we present a multiscale, individual-based simulation environment that integrates CompuCell3D for lattice-
based modelling on the cellular level and Bionetsolver for intracellular modelling. CompuCell3D or CC3D provides an
implementation of the lattice-based Cellular Potts Model or CPM (also known as the Glazier-Graner-Hogeweg or GGH
model) and a Monte Carlo method based on the metropolis algorithm for system evolution. The integration of CC3D for
cellular systems with Bionetsolver for subcellular systems enables us to develop a multiscale mathematical model and to
study the evolution of cell behaviour due to the dynamics inside of the cells, capturing aspects of cell behaviour and
interaction that is not possible using continuum approaches. We then apply this multiscale modelling technique to a model
of cancer growth and invasion, based on a previously published model of Ramis-Conde et al. (2008) where individual cell
behaviour is driven by a molecular network describing the dynamics of E-cadherin and b-catenin. In this model, which we
refer to as the centre-based model, an alternative individual-based modelling technique was used, namely, a lattice-free
approach. In many respects, the GGH or CPM methodology and the approach of the centre-based model have the same
overall goal, that is to mimic behaviours and interactions of biological cells. Although the mathematical foundations and
computational implementations of the two approaches are very different, the results of the presented simulations are
compatible with each other, suggesting that by using individual-based approaches we can formulate a natural way of
describing complex multi-cell, multiscale models. The ability to easily reproduce results of one modelling approach using an
alternative approach is also essential from a model cross-validation standpoint and also helps to identify any modelling
artefacts specific to a given computational approach.
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Introduction

0.1 About Multiscale Modelling
Computational models of complex biomedical phenomena,

such as tumour development, are becoming an integral part of

building our understanding of underlying cancer biology.

Mathematical models which are generated from biological data

and experiments, e.g., in vivo or in vitro, through phenomenological

observations in real patients help in explaining the mechanisms of

this complex phenomenon. Quantitative, predictive models have

the potential to significantly improve biomedical research by

allowing virtual, in silico modelling.

Experimentalists and theoreticians have agreed that cancer

progression involves processes that interact with one another and

occur at multiple temporal and spatial scales. The time scales

involved vary from nanoseconds to years: signalling events in the

cell typically occur over fractions of a second to a few seconds,

transcriptional events may take hours, cell division and growth and

tissue remodelling require days, tumour doubling times are on the

order of months, and tumour growth occurs over years, etc.

Typical spatial scales range from nanometres for protein-DNA

interactions to centimetres for a the development of a solid tumour

mass, tumour-induced angiogenesis, tissue invasion, etc. These

scales are strongly linked with each other. A phenomenon cannot

be completely considered using a single scale, fully isolated without

taking into account what happens at other smaller or larger scales.

In general, when incorporating different temporal and spatial

scales into mathematical models, there are three commonly used

viewpoints: the subcellular level, the cellular level, and the tissue

level. Or, from a modelling point of view these levels can also be

referred to as the microscopic scale, the mesoscopic scale, and the

macroscopic scale, respectively. Cancer usually starts at the

subcellular level marked by events that occur within the cell, such

as genetic mutations, transduction of chemical signals between

proteins, and a large number of intracellular components that

regulates outward activities at the cellular level such as

uncontrolled cell division, and cell detachment that leads to

epithelial-mesenchymal transition (EMT), etc. The main activities
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of cell populations, such as interactions between tumour cells and

host cells, intravasation and extravasation processes, proliferation,

apoptosis, aggregation and disaggregation properties, are all

viewed from a larger scale, that is the mesoscopic scale. The

macroscopic scale concerns activities that occur at the tissue level

such as cell migration, convection and diffusion of chemical

factors, all of which are typical for continuum processes [1].

During the last decade or so many approaches to multi-cell,

multiscale modelling of cancer growth and treatment therapy have

been developed. For example, see articles by [2–20] for modelling

details and [21–23] for reviews on multiscale modelling. The goal

of each approach is, in the first instance, to be able to replicate

observed experimental results and data. Since the biology of

cancer is very complex, models have to focus on ‘‘first order’’

effects and introduce certain simplifications to make them

computationally feasible. These simplifications often introduce

modelling artefacts i.e., observed model behaviours or side effects

which are due to the particular choice of the mathematical/

computational method. Isolating the source of modelling artefacts

is very difficult and quantifying the impact of such modelling

artefacts on model predictions is a daunting task. Therefore, in

order to identify deficiencies and limitations of modelling methods

currently in use, we have to be able to routinely conduct rigorous

model cross-validation to ensure that predictions of different

modelling approaches for a single biological system are in

agreement, at least qualitatively, with each other and with

experimental data. Since in many situations experimental data is

hard to find or simply unavailable model, the issue of model cross-

validation is even a more important issue.

For mathematical models of biomedical systems to be credible

and usable on a larger scale by a variety of biomedical researchers,

they have to be: a) easy to set up, b) easily reproducible, c)

transparent and open to peer review and challenge, d) publicly

accessible and able to run on multiple operating systems without

the need to recompile, and e) interactive and easily modifiable.

In this paper we present a case study on model cross-validation.

We reproduce a cancer invasion model, originally described in

[14], using a CC3D-based implementation and compare our

simulation results to those of the original paper (in which a centre-

based implementation was used). We document the details of

model building based on the published article, highlight obstacles

in reproducing published results and suggest a streamlined,

systematic approach to cell-based model cross-validation.

0.2 CC3D-Bionetsolver framework for multiscale
simulation

Modelling methodologies that explicitly represent individual

cells are particularly appropriate for modelling and simulation of

cancer invasion. There are important events and physical

phenomena associated with cancer invasion on the single-cell

level that can only be suitably captured in computational

simulations by accounting for individual cell properties and

important aspects of cell-cell interactions, such as changes in

cell-cell contact area.

In modelling the various stages of cancer progression, certain

computational and mathematical methodologies are more suitable

than others. For example, in the case of solid avascular tumour

growth, continuum models are well-suited since they capture bulk

properties of tissues. Instead of explicitly treating individual cells,

collective properties of the whole tumour tissue are modelled, such

as cell density and oxygen concentration. An advantage of such an

approach is that systems with a large number of cells, such as on

the order of 106 or higher, can be handled. On the other hand,

explicit representation of individual cells and their properties (e.g.,

locations, radii, morphology, surface area, volume, etc.) can

become computationally burdensome when trying to model on the

order of 104 to 106 cells. Nevertheless, such individual cell-based

modelling approaches are capable of capturing phenomena and

behaviour in multicellular systems that continuum strategies

cannot capture.

Systematic development of biomedical models may be divided

into the following distinct stages: a) creating a conceptual

biomedical model, b) developing a formal description of the

model based on an established modelling language such as the

Systems Biology Markup Language or SBML, c) translating the

formal language into a set of mathematical representations, for

example, SBML is translated into a set of ordinary differential

equations or ODEs, and d) developing a computational imple-

mentation of c).

‘‘Traditional’’ biomedical model building usually skips interme-

diate stages and jumps from a conceptual model description

directly into low-level code. This is often convenient from the

perspective of a modeller but it greatly impedes model cross-

validation, reuse or sharing. Problem solving environments, such

as CC3D, Mason, or Flame, greatly reduce the amount of effort

necessary to build models which rigorously follow stages a)–d) and

at the same time offer the same level of flexibility in model

construction as low-level programming languages. To build and

run our models we used CC3D - an open source simulation

environment based on the Glazier-Graner-Hogeweg (GGH)

model which allows simulating cell behaviours on an individual

cell basis, where individual cells can interact with each other or

with the underlying medium. Several models of tumour growth

and angiogenesis have already been simulated using CC3D

environment. See, for example, articles by [24–28].

Multiscale models in CC3D-Bionetsolver are described using a

combination of the CompuCell3D Markup Language (CC3DML)

and Python scripting. Such a combined approach allows one to

build complex biomedical models and does not require recompi-

lation when running them. In a typical CC3D simulation ‘‘static’’

aspects of the model, such as lattice size, simulation runtime, list of

cell types, initial conditions or cadherin affinities, are usually

described using CC3DML. We can replace CC3DML with

equivalent Python syntax. The ‘‘dynamic’’ part of the CC3D

model is described using Python scripting. Since Python is a full-

featured programming language, modellers are able to express

complex cell type differentiation rules, couple cell properties to

concentrations of diffusive chemicals or to cell-cell signalling or

parameterise cell adhesive properties in terms of underlying

molecular or gene regulatory networks.

0.3 Comparison of center-model and GGH-model for
multicellular simulation

Here we briefly discuss the main differences and some

similarities between the centre-based model of [14] and our

model based on the GGH model. As indicated, CC3D is a

software application that implements the GGH model, allowing

lattice-based simulation of multicellular systems. Each biological

cell is represented as a set of contiguous sites on a lattice and the

system evolves in time through an energy minimization procedure.

On the other hand, the centre-based model represents each

biological cell in terms of the location of its centre of mass and its

radius. This fundamental distinction between the two methodol-

ogies is illustrated in Fig. 1.

The cells of the centre-based model behave as elastic spheres

and equations describing their behaviour and interactions are

derived on the basis of classical mechanical concepts. The centre-

based model approximates cell-cell contact areas using the radii of

Multiscale Modelling of Cancer

PLoS ONE | www.plosone.org 2 March 2012 | Volume 7 | Issue 3 | e33726



neighbouring cells and the distance between their centres. In

contrast, the concept of cell neighbour has an explicit represen-

tation in the GGH model since two cells share one or more lattice

edges (for 2D simulations) or faces (3D simulations). Because of

these differences, each modelling approach has relative strengths

and weaknesses with respect to capturing different biophysical

processes and phenomena. On the other hand, the GGH and

centre-based models also have some important similarities. Both

methodologies use continuum, reaction-diffusion equations to

model extracellular chemical fields and they both incorporate cell-

cell adhesion and mechanical constraints on cell shape. In each

case, extracellular chemical fields can both modify and be

modified by cell behaviours or properties such as cell growth

rates, secretion, absorption and chemotaxis.

0.4 An application to multiscale modelling of cancer
growth and invasion

The multiscale model of epithelial-mesenchymal transition

(EMT) developed by [14] incorporates important aspects of E-

cadherin-b-catenin signaling and its coupling to cell-level properties

of intercellular contact and adhesion. This model requires explicit

representation (on a cell-to-cell basis) of localised and spatially

heterogeneous changes in cell-cell adhesion strength and contact

areas. It is at this level of granularity that invasive cancer cells sense

and respond to their environment. In terms of biological processes,

the model of [14] captures cell-contact-dependent recruitment of E-

cadherin and b-catenin to the cell membrane and reincorporation

of both back into the cytoplasm. Computationally, the simulations

incorporated (1) time-varying changes in cell-cell adhesion as a

function of a system of ordinary differential equations (ODEs) for

intracellular reaction kinetics of E-cadherin-b-catenin signalling and

(2) changes in rate parameter values in the reaction kinetic model as

a function of changing contact areas between neighbouring cells.

Results

We ran three sets of 3D simulations to model: (1) detachment

waves of b-catenin in a thin layer of epithelial cells, described in

subsection 0.5, (2) tumour growth and detachment of cells from a

layer of epithelial cells, and (3) tumour growth and detachment of

cells from a multicellular tumour spheroid, both described in

subsection 0.6.

Initially, all cells were individually created in the shape of a cube

of size 7|7|7 pixels, with gaps of 1 pixel length between them.

From 0 MCS to 20 MCS we allow the cells to grow, during which

time the volumes and surface areas of the cells increase and the

cells become more spherical. During this period of the simulations,

cell-cell contact areas undergo an equilibrating transient that does

not reflect natural phenomena. Thus, we did not start the

numerical integration of the differential equations (corresponding

to the subcellular biochemical networks) until 20 MCS. Keeping in

mind that the subcellular model is sensitive to changes in

intercellular contact areas, if numerical integration occurred

during the initial cell shape changes, unrealistic subcellular

dynamics could occur as an artefact of these changes. Starting

the integration at 20 MCS helped avoid this. All parameter values

used in the computational simulations are listed in Table 1, unless

stated otherwise.

0.5 Detachment Waves of Epithelial Layer Simulations
To simulate detachment waves of b-catenin in a thin layer of

epithelial cells, we performed the simulation on a domain or a

lattice of 264|224|60 pixels in x, y, and z directions,

respectively, with the z-axis being perpendicular to the page. In

the lattice, we place a sheet of cells with 30 cells along the x-axis

(horizontal), 25 cells along the y-axis (vertical), and 1 cell along the

z-axis. As mentioned, initially each cell occupies a cube 7|7|7
pixels and we insert a gap of 1 pixel between each cell, as can be

seen in the top left figure of Fig. 2. The aim of giving a 1-pixel gap

for this simulation is to give space for the cells to grow where cell

volume increases followed by increasing cell surface area until the

cells become spherical and tightly attached to each other, as can be

seen from the top second left figure (MCS 30) of Fig. 2. The initial

target volume for cells is set to 1:2 times the cell volume, making

the average volume of each cell about 410 pixels. We set 1 pixel

equal to 2mm. Therefore one tumour cell has a volume of about

3280mm3. The sheet represents a thin layer of tissue with a volume

of 0:48|0:408|0:014mm3.

In the intracellular model, summarised in Eqs. (15)–(18),

disruption of cell-cell adhesion occurs when there is an increase

in the concentration of free b-catenin in the cytoplasm, that is

when b-catenin concentration exceeds a specified threshold value

as a result of disassociation of E-cadherin-b-catenin complex at the

cell membrane. The threshold we specified for our simulations is

Figure 1. Schematic illustration of a lattice-based representation of cells in the GGH model (left figure) and a lattice-free
representation in the centre-based model (right figure).
doi:10.1371/journal.pone.0033726.g001

Multiscale Modelling of Cancer

PLoS ONE | www.plosone.org 3 March 2012 | Volume 7 | Issue 3 | e33726



50:0. As explained previously, for cell detachment to occur,

nuclear b-catenin must exceed this threshold value.

Depending upon whether b-catenin is above or below the

critical EMT-MET threshold, the terms A1 and A2 in Eqs. (11)

and (12) are changed appropriately. In each case, if b-catenin is

below the threshold, the first terms in Eqs. (11) and (12) are used.

On the other hand, if b-catenin is above the threshold, the second

terms in each of the equations are used. However, in the SBML

Table 1. Dimensionless intracellular parameter values for the cell detachment simulations.

Parameter Definition Value Reference

n E-cadherin-b-catenin binding rate 100 [14]

kz b-catenin-proteasome downregulated binding rate 1:5 Estimated

k{ b-catenin-proteasome dissociation rate 19 [14]

k2 b-catenin degradation rate in proteasome 1 [14]*

km b-catenin production rate 14 [14]*

a E-cadherin-b-catenin dissociation rate 2 [14]

cT b-catenin threshold value 50 [14]

rc E-cadherin cytoplasm-surface translocation rate 200 [14]

rd E-cadherin surface-cytoplasm translocation rate 200 [14]

PT Proteasome total concentration 21 [14]*

ET E-cadherin total concentration 100 [14]

*appears in the paper’s correction.
doi:10.1371/journal.pone.0033726.t001

Figure 2. Plots showing a sequence of the disruption of a layer of epithelial cells due to an increase in the b-catenin concentration
inside the cells. After all cells have detached from the layer of cells or from each other (EMT), b-catenin concentrations eventually drop, causing
cells that are close to each other to undergo re-attachment (MET) while other cells that are not close remain as mesenchymal cells. Colours of the cells
correspond to concentration of b-catenin.
doi:10.1371/journal.pone.0033726.g002

Multiscale Modelling of Cancer

PLoS ONE | www.plosone.org 4 March 2012 | Volume 7 | Issue 3 | e33726



implementation of our subcellular model, we do not actually

implement two separate sets of equations for attached (below-

threshold) and detached (above-threshold) cells. Instead, we

include both terms from Eq. (11) and both terms from Eq. (12)

in the same SBML file. We effectively ‘‘include’’ or ‘‘omit’’ one

term or the other (depending on whether cells are below-threshold

or above-threshold) by either (1) setting a equal to 0 and n equal to

a non-zero value (see n in Table 1) for the case of a below-

threshold cell or (2) setting n equal to 0 and a equal to a non-zero

value (see a in Table 1) for the case of an above-threshold cell.

In our CC3D-Bionetsolver implementation (i.e., our Python

script), the increase of b-catenin concentration above threshold is

deliberately initiated by decreasing the value of kz at a specified

time (70 MCS) from kz~1:5 to kz~1:0. This parameter

influences the association rate of b-catenin with the proteasome.

When kz~1:5, b-catenin-proteasome complex formation is

sufficiently rapid to keep the b-catenin concentration of all cells

well below the threshold of cT~50:0. However, when kz is

decreased to a value of 1:0, b-catenin accumulates in the

cytoplasm as a result of decreased proteasomal degradation.

We check the b-catenin concentration for every cell at each

MCS. If the b-catenin concentration for a cell of type ‘‘Low-

BetaCat’’ increases above a threshold value of 50:0, the cell type is

changed to ‘‘HighBetaCat’’, n is set to 0:0 instead of 100:0 and a is

set to 2:0 instead of 0:0. Similarly, when the b-catenin

concentration of a ‘‘HighBetaCat’’ cell decreases below the

threshold, the value of n for that cell is set to 100:0 and a is set

to 0:0 and the cell type is switched to ‘‘LowBetaCat’’.

In the case of an EMT event (i.e., a cell type change from

‘‘LowBetaCat’’ to ‘‘HighBetaCat’’), changing the values of n and a
as described is equivalent to swapping the expressions in A1 and

A2, between the below-threshold (½b�vcT ) expressions and the

above-threshold (½b�wcT ) expressions. Physically, this corresponds

to (1) a cessation of E-cadherin-b-catenin complex formation in

the membrane (n~0:0) and (2) an accelerated dissociation of E-

cadherin-b-catenin complex (i.e., the dissociation rate parameter

di(t), is increased by a~2:0) to form cytoplasmic (free) E-cadherin

and free b-catenin. Together, the effects of these two phenomena

are (1) an increased concentration of b-catenin in the cytoplasm

and (2) a significantly reduced adhesion strength between the

transformed cell and its neighbouring cells due to the loss of E-

cadherin-b-catenin complex in the membrane.

In Fig. 2 an increase of b-catenin above threshold occurs in

several cells, randomly. When one cell is induced with a high b-

catenin concentration above the threshold cT , the cell becomes

vulnerable to a loss of cell-cell attachment resulting in EMT. The

event propagates outward from this localised event, affecting

neighbouring cells. When a given cell detaches, the neighbouring

cells in turn become vulnerable to EMT because of increased free

b-catenin concentration inside the neighbouring cells. These cells

detach from surrounding cells and the effects propagate through-

out the layer of cells. At 130 MCS, we observe a small group of

cells that start to detach. By 200 MCS, detachment waves have

spread outward to adjacent cells. As time evolves, some cells at

other positions also show detachment waves independently.

Eventually around 500 MCS all cells in the layer have been

affected and have detached from each other. This is the hallmark

of EMT events. Due to the stochastic nature of the GGH model,

regular waves of cell detachment which originate from one cell

and then spread radially and regularly outward as seen in [14] can

not be produced using CompuCell3D. Nevertheless, the results are

qualitatively the same between our implementation and that of

[14]. Also, our aim in this paper is to illustrate differences between

the two approaches. They are different in different ways and we

may biologically conjecture that neither is superior to the other.

In order to see how the concentrations of proteins inside

individual cells vary over time, we wrote functions in our CC3D-

Bionetsolver code to record values to output files of all

concentrations each MCS. In Fig. 3, we plot concentrations of

b-catenin, E-cadherin-b-catenin complex, and b-catenin-protea-

some complex for a typical cell undergoing EMT and MET (see

the simulation results shown in Fig. 2). Because of the stochastic

nature of the GGH model, the concentrations fluctuate in

response to fluctuations in contact area between cells. When the

concentration of b-catenin increases significantly (due to loss of

contact area between cells and complete detachment) the

transition curve (during the period of detachment) becomes

smooth (i.e., fluctuations cease). After the cell regains contact with

other cells, the curve is observed to fluctuate again. The top figure

of Fig. 3 shows the concentrations of b-catenin, E-cadherin-b-

catenin complex, and b-catenin-proteasome complex when

running the simulation up to 5000 MCS. Here we see three

cycles of detachment and attachment, as shown from the repeated

cycles of high and low concentrations of b-catenin (yellowish-green

line).

Once the cells have detached from each other, they are free to

randomly migrate from their original positions. However, in this

simulation we did not apply any source of attractants that should

cause the cells to migrate away from the layer; the cells detach but

stay in their position or slightly move due to the stochastic nature

of CC3D. Allowing the simulation to proceed all the way to 5000
MCS, we observe that b-catenin concentrations in detached cells

gradually decrease back toward the threshold. When the

concentration reaches the threshold, a in the internal model is

again set to zero and n is set to a non-zero value. This alters the

internal kinetics such that b-catenin is no longer rapidly degraded.

Instead, it accumulates inside the cells and is reincorporated into

E-cadherin-b-catenin complex. This process occurs rapidly so that

near-zero concentrations of free b-catenin are observed in some

cells as seen in the bottom left figure of Fig. 3 (bottom figures are

plots of the concentrations to 1000 MCS or for one cycle of

detachment).

The increase of E-cadherin-b-catenin complex increases the

adhesiveness of cells and they undergo mesenchymal-epithelial

transition (MET) resulting in the reattachment of neighbouring

cells. Thus, cells again exhibit an epithelial phenotype, but this

time with an irregular configuration of the cell layer, or loss of

epithelial configuration. This is because of the random migration

of cells away from their original positions that occurred when they

were detached. The results we report here resemble those in Fig. 7

of [14]. We also observe from the simulation results that, after the

first stage of EMT events, a few cells migrate so far that they

cannot reattach to other cells. These cells remain as mesenchymal

cells.

As for cells that cannot reattach after the first detachment

(because they have migrated too far from other cells and thus

remain mesenchymal), the concentrations of the subcellular

proteins immediately reach their own steady states, as shown by

plots of data in Fig. 4.

0.6 Tumour Growth and Invasion
For simulations involving tumour growth, the GGH target

volume is incremented each MCS during growth phases at a

constant rate of 0:02 times the current cell volume and GGH

target surface area is also incremented at a constant rate of 0:02
times the current cell surface area. This results in a doubling of cell

number approximately every 40 MCS. Cell division was set to
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occur when the volume of a cell exceeded 2 times its initial

volume. This rate of growth was not necessarily intended to reflect

in vivo rates of tumour cell growth. Rather, the purpose in our

simulations is simply to let the tumour grow to a specified size so

that we can then initiate EMT events and observe the subsequent

dynamics of cell detachment and migration.

0.6.1 Tumour from a Layer of Cells. To simulate the

growth of a tumour from a layer of cells (common for tumours of

epithelial tissue origin) we use a larger 3-dimensional lattice or a

cubic lattice of size 120|120|120 pixels in x, y, and z directions.

Initially we place one layer of cells (10|10 cells) at one face/side

of the cube (at x~120) as seen in the top left figure in Fig. 5. All

Figure 3. Plots of b-catenin, E-cadherin-b-catenin complex, and proteasome-b-catenin concentrations for a simulation in which cells
undergo epithelial-mesenchymal transition (EMT) and subsequently recover by mesenchymal-epithelial transition (MET). The cells
reattach to adjacent cells and thereby reform an epithelial layer. The cycle of detachment and reattachment occurs about 3 times until 5000 MCS.
doi:10.1371/journal.pone.0033726.g003

Figure 4. Plots of b-catenin, E-cadherin-b-catenin complex, and proteasome-b-catenin concentrations for a typical cell undergoing
epithelial-mesenchymal transition.
doi:10.1371/journal.pone.0033726.g004
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cells start out cube-shaped with size 7|7|7 pixels and a 1 pixel

gap between each of them. In this simulation, we apply a linear

concentration gradient of chemoattractant in the x-axis direction

to generate cell migration.

From a single thin layer, the tumour grows and becomes a bulky

layer as a result of rapid cell division. In the implementation of

CC3D-Bionetsolver, it is possible to let the tumour grow

indefinitely, but in this simulation we limit the cell division. Cells

are permitted to grow and divide until the total number of cells in

the tumour mass exceeds 500 cells. After 200 MCS we initiate an

increase of free b-catenin concentration, as previously described,

by reducing the value of kz from 1:5 to 1:0. Beginning around

500 MCS, some cells in the outer layer show high concentrations

of free b-catenin. These cells eventually break away from the

primary tumour mass and migrate in the direction of increasing

chemoattractant concentration (away from the tumour mass).

As EMT events propagate over the tumour surface and more

cells begin to detach from the outer layer, cells underneath the

surface are exposed to the medium. The reduced amount of cell-

cell contact area that these underlying cells experience destabilises

them and makes them vulnerable to EMT. The b-catenin

concentrations in these cells increase above threshold and

eventually the cells undergo EMT and detach from the tumour.

In this way, the effects of early EMT events propagate into the

tumour surface as the tumour mass grows and a continual series of

detachment events are observed to occur.

To show the distribution of free b-catenin inside the cells that

remain within or attached to the primary tumour mass, we provide

a cross sectional view of the tumour mass along the yz plane in

Fig. 6. Cells that are bound to other cells inside the tumour are

roughly blue in colour. This indicates a free b-catenin concentra-

tion lower than the threshold cT . On the other hand, cells in the

Figure 5. Plots showing the results of a simulation of tumour growth and local invasion (detachment) from a layer of cells. The
tumour grows rapidly from a single layer and eventually EMT events are observed to occur. Cell colour represents b-catenin concentration.
doi:10.1371/journal.pone.0033726.g005
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outer layer are exposed to medium and have less cell-cell contact

area. The colour of these cells and those immediately underneath

them range from yellowish green to dark orange. This indicates

higher concentrations of free b-catenin near to or greater than cT .

These results are in good agreement with the simulation results of

[14] and experimental data of [29]. While our mathematical

model does not explicitly model (or make a distinction between)

the two types of b-catenin, we assume that the concentration of

free b-catenin inside the cytoplasm (which we explicitly model)

provides some indication of the concentration of nuclear b-

catenin.

To study the sensitivity of multiscale dynamics to the b-catenin

degradation rate parameter k2, [14] performed simulations with

different values of k2 (corresponding to different degrees of tumour

cell invasiveness in tumour invasion assays). The invasion assay has

been used in vitro as a measure of invasive potential of tumour cells.

In our simulations, if k2 is small this results in high concentrations

of free b-catenin. If concentrations exceed threshold, then cells are

susceptible to cell-cell detachment and may become invasive by

breaking away from the primary tumour mass. In other words,

sufficiently small k2 can be thought of as a marker for malignant or

invasive tumour cells. [14] used b-catenin degradation rate values

of k2~10 min{1 (fast degradation rate), k2~1 min{1 (medium

degradation rate), and k2~0 min{1 (no degradation).

Our CC3D-Bionetsolver implementation is, for some reason,

very sensitive to small changes in k2. In other words, tumour cell

invasiveness in our simulations varies significantly with only small

variations in k2 values (much smaller than those used in [14]).

Because of this sensitivity, we only varied k2 within a very small

range using a value of k2~0:95 for the low degradation rate,

k2~1:0 for the medium degradation rate and k2~1:05 for the fast

degradation rate. The resulting data that we collected from our

simulations are summarised in Fig. 7, where, qualitatively, the

results are the same as those in [14]. This illustrates the differences

between the two approaches, which is the main aim of this paper.

We have plotted the number of cells that reached a fixed distance

over time. In the implementation, we remove cells that reach a

certain distance from the main tumour mass. For this, we chose a

distance 70 pixels. The maximum number of cells in the

simulations (and therefore the maximum number of cells that

can be removed) is 500 for all simulations. The curve obtained

from the slow degradation rate simulation (k2~0:95) increases

exponentially over a short period of time (purple line), while that

obtained using k2~1:0 shows a more gradual increase in the

number of removed cells (blue line). Finally, the curve corre-

sponding to k2~1:05 (the fast degradation rate invasion assay)

increases very slowly, indicating that only a small number of cells

detached and were removed beyond the distance threshold of 70
pixels (green line).

0.6.2 Multicellular Spheroid Tumour (MTS). It was also

of interest to see how our CC3D-Bionetsolver implementation

could mimic the growth and invasion of multicellular tumour

spheroids or MTS. These are spherical aggregations of (malignant)

cells that can be grown in vitro. MTS are particularly used in

cancer research for studying multicellular resistance or chemo- or

radiotherapy assays [30]. They can be used to study cell-cell and

cell-matrix adhesion in vitro as well as the influence of the

environment on many cellular functions including differentiation,

cell death, apoptosis, gene expression and regulation of

proliferation. MTS exhibit the characteristics of three-

dimensional solid tumours.

For MTS simulations, we use a cubic lattice with size

240|240|240 pixels in x, y, and z directions. The simulations

begin with one cube-shaped cell (size 7|7|7 pixels) placed at the

centre of the cubic lattice. To maintain tumour compactness as

cells divide and to prevent undesirable effects before we trigger

detachment, we set the threshold value of b-catenin (cT ) to a

relatively high value (cT~70). This ensures that no cells undergo

EMT during the growth phase (in which the tumour is permitted

to grow and become spherical in shape). An image of the tumour

during this stage in the simulation is shown in the top right figure

in Fig. 8. At 400 MCS the value of kz is decreased from 1:5 to 1:0

Figure 6. Plot of a cross sectional view showing the spatial
distribution of b-catenin concentration inside cells from the
simulation of tumour growth from a layer of cells. Cells in the
centre of the tumour mass have a large number of binding neighbours,
hence the concentration of b-catenin is lower than the cells at the outer
layer of tumour mass that have fewer binding neighbours and a high
concentration of free b-catenin.
doi:10.1371/journal.pone.0033726.g006

Figure 7. Plots showing the effect of varying the parameter k2

on the number of cells that detach from a primary tumour
mass in a layer configuration. The value of k2 was varied between
high, intermediate and low values and the number of cells that detach
and migrate a certain distance from the tumour mass was monitored.
doi:10.1371/journal.pone.0033726.g007
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and at 500 MCS cells at the surface of the tumour spheroid can be

seen with a high concentration of free b-catenin. In these

simulations, we apply a radial chemoattractant gradient increasing

outwardly in all directions from a minimum value at the center of

the cubic lattice. After losing cell-cell adhesion with neighbouring

cells (due to EMT resulting from above-threshold concentrations

of free b-catenin), detached cells migrate radially outward in the

direction of increasing chemoattractant concentration.

An interesting feature of the data collected from MTS

simulations is that it gives an indication of the size of the tumour.

In Fig. 9 we show cell positions for a single cell over time in

simulations with different values of k2. Cell positions with respect

to an initial position (where the cell was created as a result of

mitosis) were written to an output file for selected cells. All data in

Fig. 9 were taken from cell ID 1, which actually was not created by

mitosis, but instead was present in the initial lattice configuration

at 0 MCS. The data indicated by the red line were generated using

a value of k2~0:95, the blue line represents data using k2~1:0,

and the black line resulted from a simulation using k2~1:02. All

data initially show an identical change in cell position from the

centre of the lattice toward the same fixed position at 40 pixels.

The cell resides here for an extended period of time before

migrating quickly toward the edge of the lattice. This position of

40 pixels can be assumed to be the radius of the MTS. All three

simulations (using different values of k2) indicate the same value

for tumour radius. On the other hand, for each k2 value, the cell

detaches from the primary tumour mass at a different time. This

can be seen in the latter portions of each of the curves. In each

case, there is a portion of the time-course that increases linearly

(indicating the cell has detached from the main tumour). This

linearly increasing portion occurs at a different point in time for

each of the three simulations.

In a study by [31] of the growth and invasion of glioblastoma

multiforme (GBM) in 3-dimensional collagen I matrices, invasive

distance is defined as the radius of the entire GBM system minus

the radius of the MTS. Thus, in our simulations, invasive distance

corresponds to the distance that cells move radially outward from

the MTS after detaching from the primary tumour mass as seen in

Fig. 9.

Plots of invasion distance obtained from our MTS simulations

show patterns similar to the data obtained from simulations using

a layer of cells. This can be seen in Fig. 10. In the case of low b-

catenin degradation rate (k2~0:95), invasion assay data, indicated

by the purple line, show an exponential increase in the number of

cells that have reached a distance of 70 pixels (i.e., have been

removed from the simulations). For simulations using k2~1:0 and

k2~1:02, cell removal rates are slower than for the simulation

using k2~0:95, thus suggesting less invasive tumours.

Our simulation results have verified in vitro and in vivo

experiments, that the level of invasiveness of tumour cells can be

assessed from the extent of the loss of cell-cell adhesion. We can

see in our simulations that high level of invasiveness is achieved by

down-regulation of cell-cell adhesion, that is by decreasing the

values of k2. We use k2~0:95 to simulate more invasive scenario

and k2~1:0 for less invasive scenario as shown by the bottom

right and bottom left figures in Fig. 11, respectively. This then

must be followed by up-regulation of cell-matrix adhesion, another

component that is required for successful invasion. This ‘‘discrete

analogy’’ can be related to the inverse relation between cell-cell

and cell-matrix adhesion, that is in order to invade and migrate

through the surrounding tissue, cell-cell adhesion should be

sufficiently low and cell-matrix adhesion should be sufficiently

high.

In the study by [31] of glioblastoma multiforme (GBM) growth

and invasion, it was shown the effects of increasing collagen

concentration on the level of invasiveness of GBM cells, which is

similar to increasing cell-matrix adhesion. GBM implanted in a

high collagen concentration at early times shows growth patterns

typical of malignant tumours where invasive cells gradually

accumulate from the centre of MTS, invading outwardly in all

directions, as shown in the top right figure of Fig. 11 of the

experimental data. On the other hand, GBM that has been

implanted in a low collagen concentration shows relatively few

invasive cells that tend to invade along distinct branches, as shown

in the top left figure. We can relate this to invasion assay

simulations that we have performed using a slow b-catenin

degradation rate k2 (where a low k2 value implies more invasive

tumour cells). Here, we compare the results of our simulations in

Fig. 11 with experimental data from [31]. Using k2~0:95 to

simulate the invasive scenario and k2~1:0 to simulate the less

invasive scenario, our simulations show different growth patterns

of MTS that are strikingly noticeable between MTS with more

invasive cells (bottom right figure) and MTS that is less invasive

(bottom left figure). Qualitatively, our simulations are comparable

to the experimental data.

Although we cannot directly compare our simulation results

(bottom right and left figures) with the experimental results of [31]

(top right and left figures), the patterns of invasion from decreasing

cell-cell adhesion (our simulation results) show similarities with the

patterns of invasion from increasing cell-matrix adhesion (exper-

imental results). We note that GBM is a sarcoma and likely not use

E-cadherin/b-catenin signalling as it is not originated from

epithelial tissues. Instead, sarcomas along with other types of

brain tumours, express N-cadherin that also mediate calcium-

dependent intercellular adhesion. Nevertheless, another paper by

[18] developed another multiscale model of transendothelial

migration (TEM) involving N-cadherin in which the pathway that

they developed is not far different than the pathway using E-

cadherin, based on their literature study. Hence, there may be

possibility that the kinetics of intracellular proteins of GBM similar

to the kinetics we have described here.

Discussion

In this paper, we have developed a multiscale individual cell-

based model to study the roles of intracellular E-cadherin and b-

catenin dynamics in cell-cell adhesion within tumours and tumour

cell invasion. To model the intracellular biology, we used a

mathematical model developed by [14]. We used CC3D, a lattice-

based simulation environment, for modelling the cellular level and

Bionetsolver, a programming library, for modelling the subcellular

(or intracellular) level. The integration of CC3D and Bionetsolver

modelling tools enables us to study cell behaviours that are driven

by the dynamics inside cells. It allows us to tune the level of detail

at the intracellular level, without switching the simulation

framework, and examine the effects of changing details at the

cellular level.

In the model presented here, we examined invasive behaviours

of cancer cells by modifying key parameters that are responsible

for cell adhesion. Studies have suggested that nuclear b-catenin

upregulation may characterise invasive cell populations in many

types of cancer [29,32–34]. It is possible to tune parameters that

regulate the concentration of free b-catenin (including nuclear b-

catenin) to study cancer invasiveness in silico. Two parameters

considered by [14] and that we considered in our simulations are

kz and k2. The parameter kz influences the association rate of b-

catenin with the proteasome. A sufficiently high kz helps maintain
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appropriate cell-cell adhesion and tumour compactness because it

keeps the b-catenin concentration of all cells well below a

threshold value. However, when kz is decreased to a sufficiently

low value, free b-catenin accumulates in the cytoplasm as a result

of decreased b-catenin-proteasome complex. This leads to EMT

events, in which cells lose cell-cell adhesion, break off from the

primary tumour body, and migrate through and invade surround-

ing tissue. Varying the parameter k2 (which influences the rate of

b-catenin degradation) affects the invasive potential of cells as

demonstrated by our simulated invasion assays. Sufficiently low k2

results in cells that are more invasive than cells with a

comparatively high k2. Our simulation results obtained by varying

k2 are qualitatively comparable to experimental data obtained in a

study of multicellular tumour spheroids.

While we were able to qualitatively reproduce results from [14],

there were noticeable discrepancies that are likely due to

fundamental differences in the two simulation methodologies. In

contrast to the centre-based implementation of [14], where it is

possible to manipulate a single cell and thereby initiate

detachment waves, our CC3D-BionetSolver framework does not

easily permit a similar level of control. In other words, it was

difficult to control cell properties in such a way to cause

detachment waves to appear from a single cell in an epithelial

layer and propagate radially outward in a regular manner (as

shown in Figures 5 and 6 in the paper by [14]). Instead, by

reducing kz from 1:5 to 1:0 in our GGH model, detachment

waves randomly arose from localised groups of cells within

epithelial cell layers and propagated outward irregularly. The

Figure 8. Plots showing the results of multicellular tumour spheroid simulations. The tumour grows from a single cell placed in the middle
of a cubic lattice.
doi:10.1371/journal.pone.0033726.g008
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discrepancies indicate that our approach and the centre-based

approach are quantitatively different which was one of the aims of

this paper. Nevertheless the results are qualitatively the same. See

Fig. 12 for a comparison.

Another difference, is that the stochastic nature of the GGH

model results in fluctuations of intracellular variables (concentra-

tions) because of the fluctuating contact areas between cells. This

can be seen from the plots of concentration data shown in Figs. 3

and 4. It should be noted that the question of what fundamental

differences exist between these two simulation methodologies is

distinct from the question of how well the simulation results

collectively (of either methodology) reflect or correspond to actual

experimental observations. This latter issue, while centrally

important in the field of biological modelling, does not fall within

the scope of the current study. Primary contributions of our study

include the following: (1) It brings to light important differences

that exist between two major individual cell-based modelling

methodologies (the centre-based model and the GGH model)

within the context of cancer biology and (2) it provides an

introduction to CC3D-Bionetsolver, a recently developed multi-

scale framework for multicellular simulation.

Methods

0.7 Glazier-Graner-Hogeweg or GGH Model
The GGH model contains description of objects (e.g., cells,

ECM, diffusible fields), interactions (e.g., cell-cell adhesion,

morphogen-dependent cell growth), initial conditions (e.g., initial

configuration of cells based on a time-lapse microscopy image),

and the time evolution of cell properties (e.g., b-catenin

concentration dynamics driving adhesive cell properties or rule-

based cell type differentiation).

In the GGH model cells are represented as spatially extended

domains on a fixed lattice, usually 3D Cartesian lattice or 3D

hexagonal lattice. Each cell is simply a collection of lattice pixels

having the same index (also referred to as cell id) s ið Þ where i
denotes lattice pixel, see Fig. 13. The GGH also allows

compartmentalised cells where domains represented cells are

further subdivided into subcompartments representing distinct

parts of a biological cells (e.g., membrane, organelles, etc) [35].

The dynamics of cells in the GGH model is described by

effective energy formalism and implemented as a Monte Carlo

algorithm. At each step we randomly select a pixel i as a target

pixel and randomly select one of its neighbouring pixels i0 (in this

paper we use consider pixels up to fourth nearest neighbour) as a

source pixel. Then we attempt to change its index from s ið Þ to the

index of s’~s i0ð Þ. For each pixel copy attempt, we calculate the

change in the overall system effective energy DE and accept the

attempted pixel reassignment with probability P DEð Þ:

P(DE)~

1 for DEƒ0

exp({
DE

Tm

) for DEw0

8<
: ð1Þ

where Tm is a parameter representing the effective cell motility. If i

and i0 belong to the same cell i.e. when s ið Þ~ i0ð Þ we do not copy

the index.

The net result of this algorithm is that the cellular pattern in the

GGH model evolves to minimise effective energy. We use this

property of the GGH model to construct energy terms in such a

way that their minimisation mimics actual cellular behaviour.

The simulation is subdivided (temporally) into so-called Monte

Carlo Steps (MCS) which correspond to a unit of physical time. By

convention, each MCS consists of number of pixel copy attempts

equal to the total number of lattice sites. The conversion between

pixel and physical distance (or MCS and physical time) depends on

model parameters. In a simple case for example, in Bionetsolver

we set timestepBionetwork to 0.03 and if Bionetsolver gets called

every MCS then 1 MCS corresponds to 0:03 hours. In this paper

we do not specifically set a relationship between MCS and the

physical time because in the computational simulations we also

incorporate cell mitosis or cell division which in the process itself

also requires another time convention. In the mitosis process we

do not apply any intracellular pathway, but instead we use a built-

in mitosis function provided by CC3D.

The physical distance is recovered by converting pixels into

units of length. This conversion is more straightforward than the

correspondence between MCS and physical time and in our

simulations we set 1 pixel to correspond to 2mm.

Figure 9. Position of cell ID 1 with respect to the centre of a
cubic lattice of size 240|240|240 pixels during simulations of
MTS using the following parameter values for k2: k2~0:95,
k2~1, and k2~1:02. Tumour radius is apparent from the horizontal
portion of the cell position time-courses. In each case (for all three
parameter values) this occurs at a pixel value of 40.
doi:10.1371/journal.pone.0033726.g009

Figure 10. Plots showing the number of cells removed from
MTS simulations using different values of k2 (corresponding to
different levels of invasiveness).
doi:10.1371/journal.pone.0033726.g010
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The effective energy, also called the Hamiltonian and denoted

by eitherH or E, is the core of the GGH model. The Hamiltonian

is typically expressed as a sum of terms, each term representing

different cellular behaviours, interactions, mechanics, etc. The

effective energy mixes true energies such as cell-cell adhesion with

terms that mimic energies (e.g., the response of a cell to a

chemotactic gradient of a chemical field). In our simulations we

have used Hamiltonian containing adhesion energy term, two

terms implementing constraints on cellular shapes (volume and

surface) and one term implementing chemotactic force:

Figure 11. Comparison between our computational results with experimental data. Images showing experimental data of MTS growth
patterns in low collagen concentration (top left figure), a less invasive pattern, and in high collagen concentration (top right figure), a more invasive
pattern. Our computational simulation results (bottom right figure with k2~0:95 and bottom left figure with k2~1:0) are comparable to the
experimental data. The simulation results were taken at 900 MCS. Reprinted from Biophysical Journal, 89/1, L. Kaufman, C. Brangwynne, K. Kasza, E.
Filippidi, V. Gordon, T. Deisboeck, and D. Weitz, Glioma expansion in collagen I matrices: analyzing collagen concentration-dependent growth and
motility patterns, 635–650, Copyright (2005), with permission from Elsevier [OR APPLICABLE SOCIETY COPYRIGHT OWNER].
doi:10.1371/journal.pone.0033726.g011

Figure 12. Comparison of b-catenin detachment wave simulations based on the centre model of [14] (left figure) and our CC3D-
Bionetsolver simulation results (right figure).
doi:10.1371/journal.pone.0033726.g012
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HGGH~
X

(i,j) neighbours

J(t(s(i)),t(s(j)))(1{d(s(i),s(j)))

z
X

s

lvolume(t(s))(v(s){Vt(t(s)))2

z
X

s

lsurface(t(s))(s(s){St(s))2zEchemo :

ð2Þ

The first term of Hamiltonian in Eq. 2 represents variations in

energy due to adhesion between cells of different types, a boundary

energy, that depends on J(t(s(i)),t(s(j))) between two cells

(s(i),s(j)) of given cell types (t(s(i)),t(s(j))) at a link (the interface

between two neighboring pixels). The sum is over all neighbouring

pairs of lattice sites i and j (note that the neighbour range may be

greater than one), the boundary energy coefficients are symmetric,

J(t(i),t(j))~J(t(j),t(i)) , ð3Þ

and

d(x,y)~
1 if x~y

0 if x=y :

�

For cell volume, most GGH simulations employ a volume

constraint that restricts volume variations of generalised cells from

their target volumes, defined as

Hvolume~
X

s

lvolume(t(s))(v(s){Vt(s))2 ð4Þ

where for an individual cell s, lvolume(t(s)) denotes the inverse

compressibility of the cell, v(s) is the number of pixels in the cell

(cell volume), and Vt(s) is the cell’s target volume. One useful

result from the constraint formalism is that it defines

P:{2l(v(s){Vt(s)) as the pressure inside the cell. If vvVt

the cell has a positive internal pressure while if vwVt the cell has a

negative pressure.

In an analogous way we implement constraint on cell surface

which is motivated by the fact that cells have (almost) fixed amounts

of cell membrane. A surface area constraint can be defined

Hsurface~
X

s

lsurface(t(s))(s(s){St(s))2 ð5Þ

where s(s) is the surface area of cell s, St(s) is cell’s target surface

area, and lsurface(t(s)) is cell’s inverse membrane compressibility.

The chemotaxis term Echemo represents interaction of cells with

external chemical gradient c. It is easier, and somewhat less

confusing to actually write expression for DEchemo than for Echemo.

For a given pixel copy attempt we define change in the chemotaxis

energy term as:

DEchemo~{lchemo c jð Þ{c ið Þð Þ ð6Þ

where j denotes target pixel and i denotes source pixel for an

attempt to copy s ið Þ to pixel j.

Strictly speaking Echemo is quasi energy term which is used to

produce biased cell motion up (or down) the concentration

gradient depending on sign of lchemo. The lchemo determines how

strong a given cell responds chemotactically to the external

gradient c.

In Supporting Information S1 we provide a brief CC3D tutorial

which covers the basic usage of the GGH model. More detailed

information about the model can be found in [28,36,37] and

tutorial documentation on http://www.compucel3d.org/

Manualhttp://www.compucel3d.org/Manual.

Figure 13. Schematic diagram showing the GGH representation of an index-copy attempt for two cells on a 2-dimensional square
lattice. The ‘‘white’’ pixel (source) of cell with s~4 attempts to replace the ‘‘grey’’ pixel (target) of cell with s~7. The probability of accepting the
index copy is given by equation (1). Bold lines denote boundaries of the cells. Pixel colour denotes cell type. Notice that in GGH simulations we
typically have multiple cells with different id s but belonging to the same type t.
doi:10.1371/journal.pone.0033726.g013
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0.8 Bionetsolver programming library
Bionetsolver is a Czz library with a high-level Python API that

permits easy definition of sophisticated models coupling reaction-

kinetic models described in the SBML with GGH objects for

execution in CompuCell3D. Bionetsolver makes use of the SBML

ODE Solver Library (SOSlib) to implement reaction-kinetic network

dynamics which can regulate the cell dynamics generated by the

GGH core. For further information on SOSlib, the reader may refer

to the paper in [38]. SOSlib provides functionality both for reading

SBML models and solving them as a system of ODEs. In addition to

this functionality, there are three classes – BionetworkSBML,

BionetworkTemplateLibrary and Bionetwork – that provide some

additional convenience in storing and manipulating SBML models as

well as creating ODE integrators and time-stepping the integrators.

The Python API of Bionetsolver provides a set of 7 core

functions that can be called from within a CC3D Steppable. These

7 functions are used for initialisation and manipulation of

Bionetsolver objects from within the steppable. In this way, the

entire specification of a multiscale (cell-subcell-level) simulation

can be written in Python and executed in the CC3D player.

After the Bionetsolver API is imported and initialised, SBML

models are loaded with a loadSBMLModel function and each

SBML model can be added to one or more template libraries using

the function addSBMLModelToTemplateLibrary. When

loadSBMLModel is called, a string argument is required that

signifies a name for the SBML model. Similarly, when ad-

dSBMLModelToTemplateLibrary is called, the user provides the

SBML model name (specified when loadSBMLModel was called) as

well as a string argument that signifies the name of the template

library. A single SBML model may be added to several template

libraries and each template library may contain one or more SBML

models. The code example below shows the use of these functions.

Both of them are called from within the start function of a CC3D

steppable. Notice that when loading an SBML model, both a model

name and a model key are provided as arguments. The model key is

used to reference specific SBML models in certain function

arguments. In the example below, a single SBML model is loaded

and is added to two bionetwork templates, ‘‘LowBetaCat’’ and

‘‘HighBetaCat’’. To associate bionetworks with CC3D cells, the

template name must be the name of a CC3D cell type.

# Create a bionetwork SBML model named SimpleModel

sbmlModelName = ‘‘SimpleModel’’

sbmlModelKey = ‘‘SM’’

sbmlModelPath = os.getcwd()+‘‘/MultiScaleModels/sbmlMo-

dels/SimpleExample.sbml’’

bionetAPI.loadSBMLModel(sbmlModelName, sbmlModelPath,

sbmlModelKey)

# Add ‘‘SimpleModel’’ to templates called ‘‘LowBetaCat’’ and ‘‘High-

BetaCat’’

bionetAPI.addSBMLModelToTemplateLibrary(‘‘SimpleMo-

del’’, ‘‘LowBetaCat’’)

bionetAPI.addSBMLModelToTemplateLibrary(‘‘SimpleMo-

del’’, ‘‘HighBetaCat’’)

In addition, a setBionetworkInitialCondition function can be

used to specify initial conditions for parameters and state variables

in any SBML model within a template library. As arguments to this

function, the user provides a template library name, a variable or

parameter name and the corresponding initial numerical value of

the variable or property. As indicated above, a set of SBML models

stored within a template library can be associated with a CC3D cell

type by providing the cell type name as the name of the template

library. When the function initializeBionetworks is called, a separate

bionetwork object is created for each cell of the given cell type and

the previously specified initial conditions (specified using setBio-

networkInitialCondition) are set for each of the bionetworks. Any

parameters or state variables for which setBionetworkInitialCondi-

tion was not called are simply initialised, by default, to values

specified in the original SBML models. A code excerpt below shows

the use of these functions. Note that the variable name provided as

the second argument to setBionetworkInitialCondition is prefixed

with the SBML model key (in this case SM for SimpleModel). In

case the same variable or parameter name, k1, appears in another

SBML model in the same template library, this prefix uniquely

identifies the parameter k1 found in the model indicated by the key

SM. The initializeBionetworks function accepts a single numerical

argument which corresponds to the timestep length used in the

simulation to update the SBML models.

# Set initial conditions for templates ‘‘LowBetaCat’’ and ‘‘HighBetaCat’’

bionetAPI.setBionetworkInitialCondition(‘‘LowBetaCat’’,

‘‘SM k1’’, 0.9

bionetAPI.setBionetworkInitialCondition(‘‘HighBetaCat’’,

‘‘SM k1’’,0.1

# Create bionetwork instances from templates and initialise states

initializeBionetworks(0.05)

All of the functions mentioned above are initialisation functions

and are called within the start function of the CC3D steppable. In

addition, there are three more functions that are called within the

step function of the CC3D steppable. These are (1) time-

stepBionetworks, for time-stepping the ODE integrators, (2)

getBionetworkValue, for retrieving SBML property and state

variable values from the integrators, and (3) setBionetworkValue,

for setting SBML property values of the integrators. The code

excerpt below shows an example of how getBionetworkValue and

setBionetworkValue can be called inside a ÔforÕ loop that

iterates over CC3D cells. The cell ID (referenced by cell.id) is used

to retrieve and set variable and parameter values for bionetworks

(i.e., SBML models) associated with each cell.

for cell in self.cellList:

S1 = bionetAPI.getBionetworkValue(‘‘SM S1’’, cell.id)

bionetAPI.setBionetworkValue(‘‘SM S1’’, 0.1, cell.id)

CC3D cell-level properties can be retrieved using procedures

described in the CC3D documentation and the CC3D demo

simulations. Finally, SBML property values can be set as a function

of CC3D cell properties and, likewise, CC3D cell properties can be

set as a function of SBML state variable values. This is how

mechanistic coupling can be established between SBML (subcellu-

lar) and CC3D (cell-level) properties and dynamics.

Finally, Bionetsolver has a function copyBionetworkFromParent

that can be used inside the updateAttributes function of a CC3D

mitosis steppable to copy a parent cell bionetwork to a child cell

that has just undergone mitosis. Copies of the parent SBML model

integrators are created and the states of the original integrators are

copied to the new integrators. The use of this function is illustrated

in the code excerpt below.

class MitosisSteppable(MitosisSteppableBase):

def init (self, simulator, frequency = 1):

MitosisSteppableBase. init (self, simulator, frequency)

updateAttributes(self):

childCell = self.mitosisSteppable.childCell

parentCell = self.mitosisSteppable.parentCell

bionetAPI.copyBionetworkFromParent(parentCell, childCell)

0.9 E-cadherin and b-catenin kinetics
In [14], the kinetics of E-cadherin and b-catenin in a cell are

conceptually modelled as follows. After being synthesised, E-

cadherin is released to the cytoplasm as free E-cadherin (the

concentration is denoted by ½Ec�). Free b-catenin (concentration

½b�) is assumed to be distributed in the cytoplasm and near the cell
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membrane. When there is signalling for cell-cell contact, free E-

cadherin in the cytoplasm (½Ec�) is transported to the cell

membrane (concentration ½Em�) where its cytoplasmic domain

binds to free b-catenin to form E-cadherin-b-catenin complex

(concentration ½E=b�) and the extracellular domain binds to E-

cadherin-b-catenin complex of adjacent cells. If cell detachment

occurs, E-cadherin-b-catenin complex dissociates, releasing free b-

catenin and sequestering E-cadherin into the cytoplasm by

endocytosis. The free b-catenin is then degraded and downreg-

ulated after binding with proteasome. These intracellular interac-

tions are summarised in a schematic diagram shown in Fig. 14.

The mathematical model we use to describe the dynamics of

these key chemical species concentrations (including the component

influencing cell-cell adhesion i.e., E-cadherin-b-catenin complex) in

each individual cell i formulated precisely as in [14] i.e.

d½Ec�
dt

~{ci(t)½Ec�zdi(t)½E=b� ð7aÞ

d½E=b�
dt

~A1{di(t)½E=b� ð7bÞ

d½b�
dt

~A2zdi(t)½E=b�{kz½b� PT{½C�ð Þzk{½C�zkm ð7cÞ

d½C�
dt

~kz½b� PT{½C�ð Þ{k{½C�{k2½C� ð7dÞ

where, depending on signalling,

A1~

n ET{½Ec�{½E=b�ð Þ½b� if ½b�vcT

{a½E=b� if ½b�wcT

8><
>: ð8Þ

and

A2~

{n ET{½Ec�{½E=b�ð Þ½b� if ½b�vcT

a½E=b� if ½b�wcT

8><
>: ð9Þ

The parameter km is the rate of production of b-catenin, ci(t) is

a time-dependent function describing the amount of cadherin

stimulated to form bonds in response to increased cell-cell contact,

and di(t) is a function that describes the amount of cadherin

released as a result of broken bonds during cell detachment. These

functions (ci(t) and di(t)) depend on the rate of change in contact

area between adjacent cells. They are defined as follows:

ci(t)~
X

newcontacts

ac,j(t)rc, ð10Þ

and

di(t)~
X

newdetachments

ad,j(t)rd : ð11Þ

where rc and rd are rate constants associated with E-cadherin

translocation between the cell membrane and the cytosol. The rate

constant rc reflects how quickly E-cadherin is transported from the

cytoplasm to the cell membrane in response to cell-cell contact

signalling and rd reflects the rate of the reverse action (from the

membrane to the cytoplasm) when cell detachment occurs. In [14],

ac,j(t) and ad,j(t) are time-dependent functions quantifying the rate of

increase in contact area (when E-cadherin is transported from the

cytosol to the membrane) and the rate of loss of contact area (when E-

cadherin is reincorporated from the membrane to the cytosol),

respectively. These functions are defined as follows [14]:

ac,j(t)~

L
Lt

âa(t)j , if
L
Lt

âa(t)jw0

0, otherwise

8<
:

and

ad,j(t)~
E

L
Lt

âa(t)jE , if
L
Lt

âa(t)jv0

0, otherwise

8<
:

where âa(t)j is the approximated contact area between cells i and j at

time t divided by the surface area of cell i.

The condition for attachment is assumed valid as long as the

concentration of free b-catenin ½b� is below a threshold value, cT . For

detachment to occur, the amount of free b-catenin in the cytoplasm

must be sufficiently high with an additional contribution from

dissociated E-cadherin-b-catenin complex. In other words, free b-

catenin must be higher than the threshold value (½b�wcT ). This claim

is based on several studies that have found upregulation of b-catenin in

the cytoplasm (or termed nuclear b-catenin) at the invasive front of

colorectal carcinomas [29,33], invasive breast cancers [34], fibrosar-

coma, clear cell sarcoma and carcinosarcoma [32]. Nuclear

accumulation of b-catenin initiates the loss of epithelial differentiation

and gain of mesenchyme-like capabilities of the tumour cells at the

invasive front, while in the central areas of the primary tumours,

nuclear b-catenin was found to be localised to the cell membrane.

Nuclear accumulation of b-catenin has been the most powerful

predictor of liver metastasis in colorectal cancer. This may be an

important marker for adjuvant therapy or other treatment modalities.

In order to obtain a nondimensional system of equations, we

nondimensionalise Eqs. (7a)–(7d) in the usual way by setting the

following dimensionless variables:

E�c ~
Ec

E
, E=b�~

E=b

E
, b�~

b

E
,C�~

C

E
, t�~

t

T

where E is a reference concentration of E-cadherin and T is an

appropriate reference time, from which we obtain dimensionless

parameters:

c�i (t)~ci(t)T , d�i (t)~di(t)T , k{�~k{T , k�2~k2T ,

kz�~kzTE , n�~nTE , a�~aT , k�m~km

T

E

Inserting the dimensionless variables and parameters into the

system (7) and after dropping the asterixes for notational

convenience, we obtain the dimensionless system of equations

d½Ec�
dt

~{ci(t)½Ec�zdi(t)½E=b� , ð12aÞ
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d½E=b�
dt

~A1{di(t)½E=b� , ð12bÞ

d½b�
dt

~A2zdi(t)½E=b�{kz½b� PT{½C�ð Þzk{½C�zkm , ð12cÞ

d½C�
dt

~kz½b� PT{½C�ð Þ{k{½C�{k2½C� : ð12dÞ

The dimensionless parameter values used in the simulations of

this chapter can be found in Table 1. These values are based on

the parameters used in [14] where we nondimensionalise the

parameters by assuming T~1 min and E~1 nM, unless stated

otherwise.
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